Copied to
clipboard

G = C42.46D4order 128 = 27

28th non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.46D4, C42.602C23, Q8⋊C83C2, C4⋊Q8.7C4, (C4×C8).4C22, C4.51(C2×Q16), (C2×C4).53Q16, C22⋊Q8.1C4, C4.25(C8○D4), C42.55(C2×C4), (C2×C4).97SD16, C4.92(C2×SD16), (C4×Q8).1C22, C4⋊C8.248C22, C4.9(Q8⋊C4), (C22×C4).729D4, C23.95(C22⋊C4), (C2×C42).158C22, C22.5(Q8⋊C4), C42.12C4.16C2, C2.7(C42⋊C22), C23.37C23.1C2, (C2×C4⋊C8).10C2, C4⋊C4.48(C2×C4), (C2×Q8).43(C2×C4), C2.4(C2×Q8⋊C4), (C2×C4).1445(C2×D4), (C2×C4).75(C22⋊C4), (C2×C4).307(C22×C4), (C22×C4).180(C2×C4), C22.157(C2×C22⋊C4), C2.13((C22×C8)⋊C2), SmallGroup(128,213)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.46D4
C1C2C22C2×C4C42C2×C42C23.37C23 — C42.46D4
C1C2C2×C4 — C42.46D4
C1C2×C4C2×C42 — C42.46D4
C1C22C22C42 — C42.46D4

Generators and relations for C42.46D4
 G = < a,b,c,d | a4=b4=1, c4=a2b2, d2=b, ab=ba, cac-1=ab2, dad-1=a-1, bc=cb, bd=db, dcd-1=b-1c3 >

Subgroups: 188 in 108 conjugacy classes, 54 normal (28 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C2×Q8, C2×Q8, C4×C8, C22⋊C8, C4⋊C8, C4⋊C8, C2×C42, C42⋊C2, C4×Q8, C4×Q8, C22⋊Q8, C22⋊Q8, C42.C2, C4⋊Q8, C22×C8, Q8⋊C8, C2×C4⋊C8, C42.12C4, C23.37C23, C42.46D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, SD16, Q16, C22×C4, C2×D4, Q8⋊C4, C2×C22⋊C4, C8○D4, C2×SD16, C2×Q16, (C22×C8)⋊C2, C2×Q8⋊C4, C42⋊C22, C42.46D4

Smallest permutation representation of C42.46D4
On 64 points
Generators in S64
(1 51 59 34)(2 39 60 56)(3 53 61 36)(4 33 62 50)(5 55 63 38)(6 35 64 52)(7 49 57 40)(8 37 58 54)(9 45 30 24)(10 21 31 42)(11 47 32 18)(12 23 25 44)(13 41 26 20)(14 17 27 46)(15 43 28 22)(16 19 29 48)
(1 36 63 49)(2 37 64 50)(3 38 57 51)(4 39 58 52)(5 40 59 53)(6 33 60 54)(7 34 61 55)(8 35 62 56)(9 43 26 18)(10 44 27 19)(11 45 28 20)(12 46 29 21)(13 47 30 22)(14 48 31 23)(15 41 32 24)(16 42 25 17)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 19 36 10 63 44 49 27)(2 30 37 22 64 13 50 47)(3 42 38 25 57 17 51 16)(4 11 39 45 58 28 52 20)(5 23 40 14 59 48 53 31)(6 26 33 18 60 9 54 43)(7 46 34 29 61 21 55 12)(8 15 35 41 62 32 56 24)

G:=sub<Sym(64)| (1,51,59,34)(2,39,60,56)(3,53,61,36)(4,33,62,50)(5,55,63,38)(6,35,64,52)(7,49,57,40)(8,37,58,54)(9,45,30,24)(10,21,31,42)(11,47,32,18)(12,23,25,44)(13,41,26,20)(14,17,27,46)(15,43,28,22)(16,19,29,48), (1,36,63,49)(2,37,64,50)(3,38,57,51)(4,39,58,52)(5,40,59,53)(6,33,60,54)(7,34,61,55)(8,35,62,56)(9,43,26,18)(10,44,27,19)(11,45,28,20)(12,46,29,21)(13,47,30,22)(14,48,31,23)(15,41,32,24)(16,42,25,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,19,36,10,63,44,49,27)(2,30,37,22,64,13,50,47)(3,42,38,25,57,17,51,16)(4,11,39,45,58,28,52,20)(5,23,40,14,59,48,53,31)(6,26,33,18,60,9,54,43)(7,46,34,29,61,21,55,12)(8,15,35,41,62,32,56,24)>;

G:=Group( (1,51,59,34)(2,39,60,56)(3,53,61,36)(4,33,62,50)(5,55,63,38)(6,35,64,52)(7,49,57,40)(8,37,58,54)(9,45,30,24)(10,21,31,42)(11,47,32,18)(12,23,25,44)(13,41,26,20)(14,17,27,46)(15,43,28,22)(16,19,29,48), (1,36,63,49)(2,37,64,50)(3,38,57,51)(4,39,58,52)(5,40,59,53)(6,33,60,54)(7,34,61,55)(8,35,62,56)(9,43,26,18)(10,44,27,19)(11,45,28,20)(12,46,29,21)(13,47,30,22)(14,48,31,23)(15,41,32,24)(16,42,25,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,19,36,10,63,44,49,27)(2,30,37,22,64,13,50,47)(3,42,38,25,57,17,51,16)(4,11,39,45,58,28,52,20)(5,23,40,14,59,48,53,31)(6,26,33,18,60,9,54,43)(7,46,34,29,61,21,55,12)(8,15,35,41,62,32,56,24) );

G=PermutationGroup([[(1,51,59,34),(2,39,60,56),(3,53,61,36),(4,33,62,50),(5,55,63,38),(6,35,64,52),(7,49,57,40),(8,37,58,54),(9,45,30,24),(10,21,31,42),(11,47,32,18),(12,23,25,44),(13,41,26,20),(14,17,27,46),(15,43,28,22),(16,19,29,48)], [(1,36,63,49),(2,37,64,50),(3,38,57,51),(4,39,58,52),(5,40,59,53),(6,33,60,54),(7,34,61,55),(8,35,62,56),(9,43,26,18),(10,44,27,19),(11,45,28,20),(12,46,29,21),(13,47,30,22),(14,48,31,23),(15,41,32,24),(16,42,25,17)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,19,36,10,63,44,49,27),(2,30,37,22,64,13,50,47),(3,42,38,25,57,17,51,16),(4,11,39,45,58,28,52,20),(5,23,40,14,59,48,53,31),(6,26,33,18,60,9,54,43),(7,46,34,29,61,21,55,12),(8,15,35,41,62,32,56,24)]])

38 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4J4K4L4M4N4O4P8A···8P
order12222244444···44444448···8
size11112211112···24488884···4

38 irreducible representations

dim1111111222224
type+++++++-
imageC1C2C2C2C2C4C4D4D4SD16Q16C8○D4C42⋊C22
kernelC42.46D4Q8⋊C8C2×C4⋊C8C42.12C4C23.37C23C22⋊Q8C4⋊Q8C42C22×C4C2×C4C2×C4C4C2
# reps1411144224482

Matrix representation of C42.46D4 in GL4(𝔽17) generated by

1000
01600
00130
0004
,
4000
0400
0010
0001
,
01500
15000
0090
00015
,
15000
01500
0002
0090
G:=sub<GL(4,GF(17))| [1,0,0,0,0,16,0,0,0,0,13,0,0,0,0,4],[4,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[0,15,0,0,15,0,0,0,0,0,9,0,0,0,0,15],[15,0,0,0,0,15,0,0,0,0,0,9,0,0,2,0] >;

C42.46D4 in GAP, Magma, Sage, TeX

C_4^2._{46}D_4
% in TeX

G:=Group("C4^2.46D4");
// GroupNames label

G:=SmallGroup(128,213);
// by ID

G=gap.SmallGroup(128,213);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,232,723,1123,570,136,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=a^2*b^2,d^2=b,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1,b*c=c*b,b*d=d*b,d*c*d^-1=b^-1*c^3>;
// generators/relations

׿
×
𝔽